Hessian-Based Model Reduction for Large-Scale Data Assimilation Problems

نویسندگان

  • Omar Bashir
  • Omar Ghattas
  • Judith Hill
  • Bart G. van Bloemen Waanders
  • Karen Willcox
چکیده

Assimilation of spatiallyand temporally-distributed state observations into simulations of dynamical systems stemming from discretized PDEs leads to inverse problems with high-dimensional control spaces in the form of discretized initial conditions. Solution of such inverse problems in “real-time” is often intractable. This motivates the construction of reduced-order models that can be used as surrogates of the high-fidelity simulations during inverse solution. For the surrogates to be useful, they must be able to approximate the observable quantities over a wide range of initial conditions. Construction of the reduced models entails sampling the initial condition space to generate an appropriate training set, which is an intractable proposition for high dimensional initial condition spaces unless the problem structure can be exploited. Here, we present a method that extracts the dominant spectrum of the inputoutput map (i.e. the Hessian of the least squares optimization problem) at low cost, and uses the principal eigenvectors as sample points. We demonstrate the efficacy of the reduction methodology on a large-scale contaminant transport problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a New Adjoint Newton Algorithm to the 3D ARPS Storm-Scale Model Using Simulated Data

The adjoint Newton algorithm (ANA) is based on the firstand second-order adjoint techniques allowing one to obtain the ‘‘Newton line search direction’’ by integrating a ‘‘tangent linear model’’ backward in time (with negative time steps). Moreover, the ANA provides a new technique to find Newton line search direction without using gradient information. The error present in approximating the Hes...

متن کامل

Second-order adjoints for solving PDE-constrained optimization problems

Inverse problems are of utmost importance in many fields of science and engineering. In the variational approach inverse problems are formulated as PDE-constrained optimization problems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost functional subject to the constraints posed by the model equations. The numerical solution of such optimization problems...

متن کامل

Hessian-based model reduction: large-scale inversion and prediction

Hessian-based model reduction was previously proposed as an approach in deriving reduced models for the solution of large-scale linear inverse problems by targeting accuracy in observation outputs. A controltheoretic view of Hessian-based model reduction that hinges on the equality between the Hessian and the transient observability gramian of the underlying linear system is presented. The mode...

متن کامل

Optimal solution error covariance in highly nonlinear problems of variational data assimilation

The problem of variational data assimilation (DA) for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition, boundary conditions and/or model parameters. The input data contain observation and background errors, hence there is an error in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can b...

متن کامل

Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation

Order reduction strategies aim to alleviate the computational burden of the four-dimensional variational data assimilation by performing the optimization in a low-order control space. The proper orthogonal decomposition (POD) approach to model reduction is used to identify a reduced-order control space for a two-dimensional global shallow water model. A reduced second-order adjoint (SOA) model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007